%D, %d %M %y
Time: %h~:~%m

Home  / Publications of the Institute scientists / Table of Contents

Table of Contents

CHEMICAL  TECHNOLOGY  OF  OXOSYNTHESIS

 

Prologue, contents, & Introduction  2
1  Technological Schemes of Oxosynthesis Processes    8
1.1  Schemes with Thermal Decobaltization 10
1.2 Salt-Containing Schemes  15
1.3 Evaperational and Mixed Schemes 17
2 The Hydroformylation Stage 19
2.1 Notions about Hydroformylation Reaction Mechanism 19
2.2 Kinetics of Cobalt Hydrocarbonyl Interactions with Olefins; Nature of Hydroformylation Chain Reactions 32
2.3 Theory of Conence Reactions 39
2.3.1 Ligand Substitution & Ligand Exchange Reactions 43
2.3.2 Ligand Introduction Reactions 48
2.3.3 Oxidizing-Restoration Reactions in Complex Compounds  49
2.3.4 Complicated Conence Reactions  50
2.3.5 Conence Reactions & Catalysis Mechanisms 56
2.4 Stages of Hydroformylation Reaction Mechanism 61
2.4.1 Formation of the  π Complex  61
2.4.2 Transition of the π Complex into Alkylcobaltcarbonyl  62
2.4.3 From Alkylcobaltcarbonyl into Acylcobaltcarbonyl  64
2.4.4 Transition of Acylcobaltcarbonyl into Aldehyde 65
2.5 Isomer Formation Mechanisms; Influence of Reaction Conditions on Isomer Contents of Final Products 69
2.6 Thermodynamic and Kinetic Regularities Relative to the Hydroformylation Reaction 82
2.6.1 Influence of Solvents on Reaction Speeds  86
2.6.2 Influence of Parameters on Isomer Contents of Products 87
2.7 Side Reactions During Olefin Hydroformylation 90
2.7.1 Homogenous Hydrogenation of Aldehydes in Alcohol 94
2.7.2 Formation of Alkylformyls 96
2.7.3 Aldol Condensation of Aldehydes  97
2.7.4 Formation of Acetyls 101
2.8 Influence of Phase Equilibriums and Reactor Stream Structures on Hydroformylation 104
2.9 Principles for Constructing Hydroformylation Centers 108
2.9.1 Chemico-Technological Specifics of Hydroformylation as a Precondition when Choosing Reactors  108
2.9.2 Apparatuses for Designing Hydroformylation Reactors 109
2.9.3 Calculating & Optimizing Hydroformylation Reactors 112
2.10 Math Modeling of Kinetics in Hydroformylation  115
2.10.1 Kinetic Model for Propylene Hydroformylation 116
2.10.2 Kinetic Model for Ethylene Hydroformylation  118
2.11 Influence of Foreign Particles on Hydroformylation 120
2.11.1 Influence of Oxygen & Peroxide Compounds on Same 120
2.11.2 Influence of Dyads and Acetylene on the Same 121
2.11.3 Influence of Ammonia on the Same 122
2.11.4 Influence of Sulfuric Compounds on the Same 122
3 Cobaltization and Decobaltization Stages 124
3.1 Cobalt Carbonyl Formation 124
3.1.1 Kinetics of Cobalt Carbonyl Formation out of Own Salts 124
Influence of  Type of Salt on Reaction Speed 125
Influence of Partial Pressure, Carbon Oxide, and Temp. 126
Influence of Aldehydes, Ketones, Alcohols, Amines 127
Mechanism for Cobalt Carbonyl Formation of Own Salts  130
3.1.2 Cobalt Carbonyl Formation out of Metallic Cobalt 137
3.1.3 Principles for Accomplishing Cobaltization Stages 139
3.2 Cobalt Extraction from Hydroformylated Products 140
3.2.1 Thermal Decobaltization 140
3.2.2 Acidic Decobaltization  143
3.2.3 Evaporational Decobaltization  146
3.2.4 Acidic-Evaporational Decobaltization 148
3.2.5 Technological Principles for Achieving Decobaltization 149
4 The Hydrogenation Stage  150
4.1 Hydrogenation of Hydroformylated Products Using the Heterogenous Catalytic System 151
4.1.1 Heterogenous Catalysts for Aldehyde Hydrogenation in Oxosynthesis 151
Cobalt Catalysts   152
Sulfurous Catalysts   154
Skeleton Catalysts   158
Chromic Catalysts  158
Other Catalysts   161
4.1.2 Kinetics and Mechanisms for Aldehyde Hydrogenation Reactions 161
4.2 Technological Principles of the Hydrogenation Stage 180
4.2.1 Choosing Industrial Reactors for Hydrogenation 180
4.2.2 Choosing Reactors for the Hydrogenation Stage 188
4.2.3 Requirements for Catalysts in Hydrogenation Stage 192
4.3 Homogenous Catalytic Hydrogenation of Aldehydes with Cobalt Carbonyls 196
5 Technological Schemes for Oxosynthesis Processes  199
5.1 Olefin Hydroformylation at Low Concentrations of Cobalt Catalysts 199
5.2 Naphthenic Evaporation Scheme (NES) for Oxosynthesis 205
5.2.1 Principles for Accomplishing the NES 205
5.2.2 Production of Cobalt Naphthene 206
5.2.3 Stages of Carbonyl Formation and Hydroformylation  207
5.2.4 The Oxidizing Decobaltization Stage  209
5.2.5 Separation of Hydroformylated Final Products; Cobalt Recirculation and Regeneratio 210
5.2.6 Aldehyde Final Product Hydrogenation  212
5.2.7 Butyl Alcohol Rectification  215
5.2.8 NES with Olefin Recirculation 216
5.3 Oxosynthesis with Cobalt Catalysts for Hydroformylation of Modified Phosphines 218
5.4 Hydroformylation with Rhodium Carbonyls  225
5.4.1 Influence of Olefin Hydroformylation Reaction Parameters on Rhodium Carbonyls 228
5.4.2 Products of Hydroformylation Reactions 233
5.4.3 Rhodium Carbonyl-Phosphine Complexes Used as Hydroformylation Catalysts 239
5.5 Comparison of Directions in Oxosynthesis Development  240
6 New Directions in Oxosynthesis Development  245
6.1 Production of 3-Methylhexanole  246
6.2 Olefin Hydrocarboxylation 248
6.3 Olefin Hydrocarbalcoxylation 250
6.3.1 Hydrocarbalcoxylation Catalysts 250
6.3.2 Influence of Pyridine on Reaction Speed and Selectivity 252
6.3.3 Influence of Parameters on Hydrocarbalcoxylation Reaction Speed Catalyzed by Cobalt Carbonyl 253
6.3.4 Influence of Olefin Structure on Hydrocarbalcoxylation Reaction Speed Catalyzed by Cobalt Carbonyl 255
6.3.5 Isomer Contents of Products During Hydrocarbalcoxylation and Its Defining Factors 257
6.3.6 The Hydrocarbalcoxylation Mechanism; Influence of Bases on Reaction Speed 259
6.3.7 Directives on the Practical Use of the Olefin Hydrocarbalcoxylation Reaction 262
6.4 Diolefin Hydrocarboxylation  263
6.5 Diolefin Hydrocarbalcoxylation 268
6.6 Production of Diethylketone via Hydroformylation 270
6.7 Hydrocarbalcoxylation of Non-Saturated High Acids and Their Ethers 273
7 Oxosynthesis Products; Scale of Production and Fields of Application 275
7.1 Propylic Alcohol, Propionic Aldehyde, Propionic Acid 276
7.2 Butyl Alcohol and Butyl Aldehyde 277
7.3 High Aliphatic Alcohols   284